

Cancer Research

Beta Glucan (β 1,3-D) primes immune cells to fight cancer

Step 1. Macrophages engulf via phagocytosis β 1, 3-D glucan

Step 1. Macrophages engulf via phagocytosis β 1, 3-D glucan

Step 1. Macrophages engulf via phagocytosis β 1, 3-D glucan

Step 2. β 1, 3-D (beta glucan) fragments are secreted and bind to Complement Receptor 3 on neutrophils, "priming" them.

Step 1. Macrophages engulf via phagocytosis β 1, 3-D glucan

Step 2. β 1, 3-D (beta glucan) fragments are secreted and bind to Complement Receptor 3 on neutrophils, "priming" them.

Cancer Research: Breast

β -Glucan Therapy of Immunogenic Breast Cancer in Mice Reduces Tumor Weight 90%

G. Ross, University of Louisville

Cancer Research: Liver

Therapy Groups (6 mice per group)

Cancer Research: Breast

Cancer Technology Summary

- Unique mechanism of beta 1,3-D glucan engages innate immune cells not normally involved in fight against cancer.
- More research needed to determine if this mechanism will work in humans.
- Multiple cancer opportunities This therapy may work against a wide range of cancer types.
- Possesses other immune enhancing benefits that make it a good candidate for multiple therapy approaches.

End of Module

This concludes this portion of the presentation.